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Abstract neural representations

1) Frames of reference for spatial representation

2)  Place cells & boundary vector cells

3) Neural level model of Spatial Memory and Imagery

4)  Grid cells and place cells

5)  Grid cells as dynamic imagery, a general model for planning?
A.  Hippocampus & striatum: Model-based versus model-free RL?
B. Dual representations theory, PTSD and intrusive imagery




Multiple parallel representations in spatial memory.
Effects of consistency with ‘Visual Snapshots’ & Internal ‘Spatial Updating’

Wang & Simons 1999

; InUp +
Objects (D) Design
g jects (2x2) &

Table - @
Visn +

(a)

(© g 100
€ 80
E 60
=]
T 40
o 20
Viewing Screen Viewing N 8§ ST T
window window Condition
Multiple parallel representations Card/ N
in spatial memory. J \Table

Visual Snapshots (egocentric),
Spatial Updating (egocentric) and
External Cues (allocentric).

1m
@ Subject

1.0 7

G
8 ]
Q 08
]
E -
s 0.6
=
o}
o 0.4 1
0.2 T T T T T T T
o] S SC ST STC T TC
)
8 InUp: + + + + = = - -
15 nUp:
@ Vise: + + - = + + . -
w
‘ 5 ExCu + - + - - + = +
b @]

Burgess, Spiers, Paleologou, 2004

23/10/2018



23/10/2018

Abstract neural representations
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5)  Grid cells as dynamic imagery, a general model for planning?
A.  Hippocampus & striatum: Model-based versus model-free RL?
B.  Dual representations theory, PTSD and intrusive imagery

The hippocampussupports memory (e.g. HM), but how does it work?

Spatial studiesin
rodents => likely neural
representations.

Place cells- ‘allocentric’ location
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Video by Julija Krupic

O’Keefe & Dostrovsky, 1971




Place cells show long term memory and pattern completion

Place cell “remapping:” long-term memory for
highy distinct environments.

learned distinction
A remains after 71 days..
4 - a - e Place cell representation
shows attractor dynamics
. . ‘ - . Wills, Lever, Cacucci, Burgess, O’Keefe, 2005
and ‘pattern completion’
| ' B depending on CA3 NMDA receptors
Nakazawa et al., 2002
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Lever, Wills, Cacucci, Burgess, O’Keefe, 2002
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Environmental boundaries particularly influence place cell firing

OKeefe & Burgess (1996)
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Place Cell firing as a thresholded sum of “Boundary Vector Cell” inputs

Boundary Vector Cells (BVCs)
signal distance to boundary
along an allocentric direction

Firing Receptive
rate field
(=

Place
Cell

environmental boundary

O’Keefe & Burgess, 1996, Hartley et al 2000

BVCs found in subiculum & entorhinal cortex
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Steve Poulter & Colin Lever

Lever, Burton, Jeewajee, OKeefe, Burgess, 2009
See also Barry et al, 2006; Solstad et al, 2008




Object Vector Cells

Unit 1

Desmukh & Knierim, 2013

and medial entorhinal cortex

Moser et al., BiorXiv 2018

10.6 Hz
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Hemispatial neglect in y

memory of Milan
square following right
parietal damage.

= formation of an
egocentric
representation in parietal
cortex from a stored
allocentric representation  «=+-<"
in medial temporal lobe? %,

R

Bisiach & Luzzatti(1978)

Several identified neural representations support spatial cognition

Hippocampal formation
(allocentric)

8

head-direction
cells

place cells

8 & 8 d

Firing Rate (spikes/sec)

[

0 90 180 270 360
Head Direction (degrees)
Ranck et al, 1984;
Taube et al, 1990

O’Keefe & Dostrovsky, 1971

boundary cells

-.p

Lever et al, 2009
Solstad et al, 2008

Hafting etal., 2005

Sensory, Parietal, Motor cortices
(egocentric)

trajectory cells,

retinal receptive fields

400

fixation

Nitz 2009
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RatMoviePC.avi
RatMoviePC.avi
RatMovieHD.avi
RatMovieHD.avi
RatMovieGC.avi
RatMovieGC.avi
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Frames of reference for neural coding

‘egocentric’
Body-centred location of objects

D ettt ->*p\/\

WChic.---ahea
sright
Perception

Action/Imagery

‘allocentric’

World-centred location of agent

D ettt ->*b\/"
/’ o
\
7S
—
Place cells

Head-direction cells

Burgess et al 2001

‘Gain field’ responses in posterior parietal cortex
i.e. conjunctive responses to (retinotopic) visual input x gaze direction

400

fixation

retinotopic response
All stim. retinal (20,-20)

L.

Size of retinotopic visual
response is modulated by

direction of gaze:

Flx center

or by direction of the head (Snyder et al 1998).
Similar responses seen in parieto-occipital ctx (Galletti et al., 1995)

Fix:(=20,20) (0,20) {20,20)
B Mh .L‘JMMI Mm
(-20,0) (0.0) €20.0)
Fix left (-20,~20) (0,~20) (20,-20)

Andersen et al 1985




Gain field neurons can produce ‘head-centred’ or
retinotopicrepresentations.
retinal position of stimulus = r, Head-Centered Retinotopic

(stimulus straight ahead)
eye gazeangle=e,

Pouget & Sejnowski, 1997

Model of memory & imagery for scenes

Egocentric-allocentric translation by ‘gain-field’ neurons
(i.e. conjunctive representationsof egocentric sensory input x head direction)

-
ey
o0
[a' b .
egocentric - - . allocentric
object/ boundary  § - object/ boundary
direction = = direction
&
s
®@ O 0O
N E S W
Head-direction
N

e

Byrne, Becker, Burgess 2007; Burgess et al., 2001;
See Pouget & Sejnowski, 1997; Deneve et al., 2001.
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Scene representation by populations of egocentric or allocentricBVCs

Receptive fields

Parietal

egocentric representation
(e.g. visual)

Scene representation by populations of egocentric or allocentricBVCs

Receptive fields

-15|

A5 10 S [] s 10 15

BVCs
egocentric representation allocentric representation

(e.g. visual)

Parietal

Becker & Burgess 2001, Burgess et al., 2001; Byrne, Becker, Burgess 2007
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Ego-allo scene
translation

‘gain field’ representation of
scene elements x head direction

(retrospenial cortex?)

perception

egocentric

Q

Bottom— Up . 'sl';l::i:‘.;grn{mion
ahead \ BYC AN
- A
c sublayer 3 ' LTM

-

allocentric

Byrne, Becker, Burgess 2007
Burgess etal., 2001
see also Pouget & Sejnowski 1997

Ego-allo scene

translation
(retrospenial cortex?)

perception

egocentric

imagery
(& action)

‘gain field’ representation of
scene elements x head direction

- Transformati
Bottom-Up . Tomehumeion
ahead \ =S
sublayer 3

Q

- N N
s : :
e @ : LTM

@
sublayer 20 Il i
TO[)—DOW’I Transformation aliocen trlc
4— sublayer 1
’, 7 * ~ s
ahead PW 27 . ~ BVC

A . . N N
ii-.- i"'i”‘;’".-.‘:i LTM
' X P .

X @
X Ped Byrne, Becker, Burgess 2007
Burgess etal., 2001

sublayer 20

see also Pouget & Sejnowski 1997
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Model of memory & imagery for scenes

‘bottom-up’ encoding/ perception
—_—

Medial Temporal network
_____________________________________________ .

PWb BVCs AQ

Pwo a all:-c:l:;ric ‘_’

OVCs Place

egocentric frame

s

perception cells
imagery (] I
PRb PRo [
T H Identity -
Rotation i LTM,
velocity H
e —————— attractor
dynamics

In a familiar environment, MTL connections generate a coherent scene
consistent with a single viewpoint (place cells) and direction (HDCs)

Bicanski & Burgess, in prep; Byrne, Becker, Burgess 2007; Burgess Becker et al, 2001

perception/ encoding

_— . )

egocentric sensory input => . . . allocentric representation
. medial parietal medial temporal d st
egocentric imagery <= ana storage
4+
recollection/ imagery 1 ‘
boundaries Anead BVCs °° I I
sensory
0

input

: ego-allo 1
Behind )
translation 05 |
Ahead
. OVCs
objects 0
|
L E PR O identity
allocentric location
Behind PC rates

7 HDC
rates
agent position S
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0 Perceptually driven MTL (bottom-up mode) tind
Ahead N
egocentric EWh =
agent view PRb rates
w2 E
05
Behind s o
N W S E
Ahead
allocentric
agentiposiion " PRo rates  object encoded
o
v
05
Behind 0
% 1
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40
30
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T 20
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Encounteringan object in a familiarenvironment
0 Perceptually driven MTL (bottom-up mode) tind
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0.5
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o
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Recollection of encounteringthe object

13



Imagery (top-down mode) - "Where did | leave my keys?"

egocentric
agent view

0

PWb Ahead
rates

BVC N
PRb rates
/ \ 1
R w E
HDC N

allocentric
agent position

N W S E

PRo rates
1

Behind

PC rates

10 20 30
cell#

40

Memory enhanced ‘perception’ of a familiarenvironment

object encoded

Model allows interpretation of fMRI patterns during recollection/ imagery

Precuneus
Mental
Imagery

Sua,

Head
direction

4 v
ea,h

3
Sty,

RSC
Ego-Allo
Transform

Sensory
Processing

In a familiar environment, MTL connections ensure generation of a coherent scene,
consistent with a single viewpoint (place cells) and direction (HDCs)

RSC /POS supports egocentric-allocentric translation, required to associate
(allocentric) internal representations with (egocentric) sensory representations
- e.g. stronger associations will form to stable sensory features, see Auger etal., 2012

14
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Model allows interpretation of fMRI patterns duringrecollection/ imagery

posterior
parietal
cortex

& prediction of human search patterns

hippocampus

parahippo.

precuneus

POS/ RSC

Burgess et al, 2001
Hartley et al, 2004

The network performs coherentspatialimagery, i.e. related to planning,

‘episodic future thinking’ and ‘scene construction’ Addis and Schacter, 2007;
Hassabis and Maguire, 2007

POS/ RSC activity and change of viewpointin memory

Viewpoint or table will rotate to avatar before test

v

! ITI

viewpoint >
table

table >
viewpoint " -
Lambrey et al 2013

RSC associates internal (allocentric) representations to (egocentric) sensory inputs
- strongassociations form to stable sensory features (e.g. Auger et al., 2012)

23/10/2018
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StretchedRoom.wmv
StretchedRoom.wmv

Relation to pattern completion and models of EpisodicMemory

e Pattern completion is seen in reconstruction
of location-object-identity in scene.

* Consistent with Marr’s model of
hippocampus & Tulving’s idea of holistic
episodic recollection/ re-experience.

¢ Consistent with measures of pattern

completion in Episodic memory
See Bardur Joensen 10:00 Friday; Horner &
Burgess (2013, 2014) Horner et al (2015).
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000 @) (@)
o0 o o%?b
C>@Z§§3>O d%ﬁ)Q§%§6
Neocortex %:

0°0°0%

Marr, 1971; Gardner-Medwin, McNaughton,
Alvarez, Squire, McClelland, O’Reilly, Treves,
Rolls, Teyler & DiScenna; Damasio;

Functional roles for Papez’s circuit?

Hippocampus (place cells):
imposing a common viewpoint on

retrieval/ imagery. \

Fornix:
Head-direction cells: imposing a -
viewing direction :
Theta cells/VCOs: grid cells, path '
integration, moving viewpoint in
imagery.

ACh/novelty/learning

Diencephalic amnesia

(Aggleton & Brown, 1999; Gaffan;
Delay & Brion 1969). E.g.,

patient NA (Squire & Slater,
1978),Korsakoff's syndrome.

N \» Dpoca

Papezs circuit-

s g

Clngu|ate contex\

- af. 8
: An[erlor N \
ThaTamus ‘ ]

Septal nuclei”

(basal forebrain)

v\%ﬁmﬂlary bodies

'OUs )
Ocs 3 (hypothalamus)
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Abstract neural representations
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Place cells & boundary vector cells

Neural level model of Spatial Memory and Imagery

Grid cells and place cells

Grid cells as dynamic imagery, a general model for planning?
Hippocampus & striatum: Model-based versus model-free RL?
Dual representations theory, PTSD and intrusive imagery

Grid cells — thought to representlocation by integrating self-motion.

The grids of nearby cells share
orientation & scale

tlel  t2c1  t2c2

Hafting et al., 2005

Grid cells occur in modules with discrete scales

Anterior Posterior 1m

Dorsal ..+ i h

%

it
Ventral &7

Grid spacing (cm)

1214 1216 1217 1228 1236
Rat

Barry etal, 2007;
see also Stensola et al., 2012

% 0 b VY
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" }\- TN e

Video by Julija Krupic
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Two ways to know where you are:
1. Environmental information

(Environmental boundaries particularly influence place cells)

outward path
s

2. Pathintegration

return path

Grid cells

Hafting et al., 2005
Video by Julija Krupic

Two ways to know where you are:

1. Environmental information

(Environmental boundaries particularly influence place cells)

outward path
T

2. Pathintegration

return path

Grid cells P
S~ ®
Sy P ol ¢ . I ‘

Hafting et al., 2005
Video by Julija Krupic

23/10/2018
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Interactions between place cells and grid cells

Estimating self-location combines environmental & self-motion information

BVCs
Environmental information J
(¢ Boundary Vector Cells) PC
Place field |
]
:
. GC 1
Self- motion Gnd :
L ——

Burgess etal, 2007

2D VR for mice (invisible reward task)

Guifen Chen, John King, Yi Lu, Francesca Cacucci, Neil Burgess, bioRxiv 2018

19



Correlation with baseline
2d VR allows expression * 1128

3.32
of normal place, grid & [NNIZd
head-direction firing ﬂ“
AR '
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Chen et al, bioRxiv 2018 091

probe  roated probe

Grid cell firing patterns reflect self-motion more than vision

cell 1 cell 2 cell 3 cell4 ceII 5 cell6
real
world -
2579 1333 30.03 é
T
Q
32.06
02 04 06 08 1.0
visual ain-xZ i in= .
158 155 visual gain =x2/3 motor influence

visual

2, coords
motor
coords

241 13

Guifen Chen, Yi Lu, John King, Francesca Cacucci, Neil Burgess, in prep

23/10/2018
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Place cell firing patterns reflect vision more than self-motion

cell1 cell 2 cell 3 cell4 cell 5 cell6 120
081 167
real 100
world
. &
2 -4
069 12.06
Ss A2
- VR
L baseline
5.56 10.47 1409
visual gain = x2 visual gain=x2/3 0 0 02 04 06 08 1.0
1.05 1.39 1.31 094 1.05 1.62 0.94 1.31 (),‘_1' 0.78 0.71 0.93 ’
, ) - P . motor influence
] visual
coords
4.00 78 6.27 1047 338 520
-~ LS "
|| l 1 %
| motor 9
coords S
=
4.00 3.62 6.27 10.38 3.36 5.20 "‘E
=
o
8
g
0
Guifen Chen, Yi Lu, John King, Francesca Cacucci, Neil Burgess, in prep GCs PCs

Interactions between place cells and grid cells

Estimating self-location combines environmental & self-motion information.

BVCs
Environmental information J
(< Boundary Vector Cells) PC
Place field
_ GC / /
Self- motion Grd
—

Burgess etal, 2007

23/10/2018
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Abstract neural representations

1) Frames of reference for spatial representation

2)  Place cells & boundary vector cells

3) Neural level model of Spatial Memory and Imagery

4)  Grid cells and place cells

5) Grid cells as dynamic imagery, a general model for planning?
A.  Hippocampus & striatum: Model-based versus model-free RL?
B.  Dual representations theory, PTSD and intrusive imagery

Grid cells and memory/imagery

Medial Temporal network

r
PWb i | BVCs — )
egocentric frame E allocentrlc E
PWo E frame E
: i | OVCs Place| |
Updating of ; cells i
viewpoint in i i
(imagery) ! 1
perception i i
! |IPRb PRo [€ i
T i Identity H
Rotation E T E
%  Agent model velocity E !
===~ Top-Down Eemmemmssmssms s ———— EC
= Bottom-Up * Iranslational velocity m———p Grid cells

Allocentric updating of (imagined) location

Bicanski & Burgess, in prep
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populations of aligned grids (modules) => changes in fMRI signal with virtual running direction

aligned runs misaligned runs

R R RN NY
Ogmmmmmmmmmﬁm

AfMRI/%

®+60(D+120 running direction

Task designed by John King

=> Grid cells allow path integration, and movement of viewpoint in imagery?

Autobiographical
memory system

Grid cells in the human autobiographical memory system? Doeller, Barry, Burgess, 2010

7.6secs 10.0secs 3.5secs 6.3secs 3.5secs

Cue ][ Imagination ][ Wait ][ObjectPllcement" Feedback

Please close your
eyes and imagine

60° symmetry in fMRI signal with imagined running direction
in Entorhinal cortex (aligned with that in virtual movement)

K
53
@ &
g2
£
35
532
£
fi

-0.6 4

Grid-like processing of movement of viewpointin imagery

3-fold 4-fold 5-fold | 6-fold

1.0 4
-0.8
-0.6
-0.4 4

0.2 4 ns

-0.2 4
-0.4

9% signal change difference
Imagiantion > Stationary

7-fold  8-fold

3-fold 4-fold 5-fold | 6-fold

Horner et al., 2016

7-fold  8-fold

23/10/2018
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Hippocampal cells can represent abstract concepts, such as
‘place’ but also, e.g., personal identity or sound frequency?

m ﬂ . Hold Release Reward 1 Ag——‘
lj ]-j ]j 7-3 =

4~ _iilen |

LRy F 5l

oile o
.,m..,. 6 A

1

s
Cell #

Soundlrequency(kﬂz) BT S

o ..Ju.- _..;I.u. T

Quiroga et al., (2005) Aronov, Nevers, Tank (2017)

press release

Grid cell firing patterns reflect the transition structure of learned
conceptual spaces?

Navigation in space of MR

bird neck & leg length

Constantinescu,
O’Reilly, Behrens
2016

Interactions between place cells and grid cells

Representing bodies of conceptual knowledge (states) and transitions between them?

BVCs
State information (place) J NP
(<> Feature Vector Cells?) PC
Place field |
1
1
1
. GC |
Transition structure i :
(self- motion) Gnd

23/10/2018
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Abstract neural representations

1) Frames of reference for spatial representation

2)  Place cells & boundary vector cells

3) Neural level model of Spatial Memory and Imagery

4)  Grid cells and place cells

5)  Grid cells as dynamic imagery, a general model for planning?
A. Hippocampus & striatum: Model-based versus model-free RL?
B.  Dual representations theory, PTSD and intrusive imagery

Hippocampo-striatal model of navigation

Packard & McGaugh Task

Switch from hippocampal ‘place’ navigation -
to striatal ‘response’ navigation
during T-maze learning

-

Experimental data
TESTDAY 8 TEST DAY 16

100% . ]

80%

Simulation results (saline)

I Place

60% 1

0% 1 I Response

20% Place
0% . -
saline  Lidocaine Saline  Lidocaine

Hippocampal Caudate Nucleus Day 8 Day 16
Injecti Injecti
njection niection Packard & McGaugh, 1996

,,S

mResponse

Response__—

23/10/2018
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Hippocampo-striatal model of navigation

Pearce et al Task

Learning water maze with local landmark,
including effects of hippocampal lesions

® Landmark
O Hidden platform

Experimental data Pearce etal., 1998
1207 %

~* Hippocampaltrial 1
—o— Control trial 1
------ Hippocampaltrial 4
===cm-- Control trial 4

Escape latency (s)

o 1 2 3 4 5 6 7 8 9 10 11

Session

Rescorla-Wagner rule (reward prediction error)
and multiple stimuli

What about when multiple stimuli are present? e.g. S1, S2->r

How should the model be modified?

W;— W; +¢e Si 6i WJ/ \Wz

(@6 =r-w;S
i.e. separate error terms for each S;

(b)6;=06=r-V; V=%,w;S
V is expected reinforcement r given all stimuli
i.e. single error term for all stimuli S;: )
the difference between actual r and V (expected r)

How would animals respond to S1 or S2? @

23/10/2018
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Experiments with multiple stimuli

Experimental terms

Phase 1: Phase 2: Test:
Overshadowing: S1,S2->r S1? weak resp
Blocking: S1->r S1,S2->r S27 -

Which model is favoured?

W; — W; + 85i5i
Blocking (Kamin, 1969) and overshadowing wl, \WZ

(Kamin, 1969; Pavlov, 1927) imply:
b)d=3=r-V;V=Z;w;S

i.e. single error term for all stimuli (the Rescorla-Wagner rule)
= difference between reinforcement and expected reinforcement given all stimuli

Boundaries versus landmarks in human spatial memory

¥

Move Landmarkvs Boundary after4 trials per object
Block 1 Block 2 Block 3 Block 4  Proximity of response to the locations

predicted by B and L => which cue used
(D
_ - — \ ? | L\d e

23/10/2018
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Learning to landmarks Preteaming P
obeys associative :
reinforcement 08

("blocking™);

learning to boundaries )
is incidental ¥
(no "blocking"). .

Striatum = reinf learning aie
H _ Compound T
Hlppocampus - learning ¢
incidental Hebbian
association. Test L1 ¥ Test L2 TestL ¥ TestB Test B1 ¥ Test B2

®
aty

* +*

+*

o'
(4]
@

i g ! { { i {
—70
=
2
@ |
8 1
g 0
‘E *k * % * % ns ns ns
o L2 L1 B L B2 B1
blocks blocks blocks does not does not  does not
L1 L2 L block B block B1  block B2

Replacing objects:
using Landmark ~ striatal activity; using Boundary ~ hippocampal activity

Influence Influence
of

o of boundary
2 04 0.4 =

£ [ i

E: 0| ey Ofey

L=

B - 0.

s 0.4 - =

Cue influence Cue influence

Learning from feedback (improvement on next trial with same object) ~
striatal activity for Landmark-related objects; hippocampal activity for Boundary-related objects

Learning Learning
g 0 to boundary
“E [h 0.4 E]
I ot
E A ry
£-0. -0.
&  min  max min  max

Learning Learning

Learning locations relative to landmarks obeys associative reinforcement (shows
blocking and overshadowing).

Learning locations relative to boundaries is incidental (no blocking or overshadowing)

Doeller, King, Burgess (2008); Doeller, Burgess (2008)

23/10/2018
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Probabilisticchoice task separates model-based vs
simple reinforcement learning

A A

Choice:
Transition S / common
probability: orrare
a s || AN =
! ! ; l ! Daw et al., 2011
$ $ time $ s
varying

Choice on next trial as function of reward and transition on previuos trial

A reinforcement B model-based C data
1

> W common
= Mrare
el
©
el
2
5 0.75
>
il
o

0.5

rewarded unrewarded rewarded unrewarded rewarded unrewarded

distance error

Hippocampussupports spatial navigation and model-based planning?

Vikbladh, Meager, King, Blackmon, Devinsky, Shohamy,
Burgess, Daw, biorXiv 2018

Boundary-related (place) strategy ~ model-based
strategy in healthy controls

f

15 o
place memory zscore(-dB)

Anterior temporal lobectomy biases away from both
boundary-related and model-based strategies.

3800 1
patients patients

ns
2800

place (dB) response (dL) model-free model-based

5 ns

regression weight
o

23/10/2018
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Hippocampo-striatal model of navigation

Architecture: Reinforcement learning

(Da/Striatum)

Sensory Input

| Critic: V(t)
8(t) = r(t) + yW(t+1) - V(1)

Place cells
Hippocampus

Incidental {Hebbian]*
learning

Comparison
(slopes of value fns.)
Prefrontal Cortex

* pattern completion among place cells + delta rule tracks presence of goal (could be
reward, or any other object) without cue competition

Chersi F, Burgess N 2015 Cognitive architecture of spatial navigation: Hippocampal & Striatal
contributions. Neuron 88:64-77. Geerts et al in prep. See also Dollé et al 2010; Sheynikhovich et al 2009.

Hippocampo-striatal model of navigation

Pearce et al Task

Learning water maze with local landmark,

including effects of hippocampal lesions ® Landmark

QO Hidden platform

Experimental data Pearce etal., 1998 Simulation results

—0—Control 14
120 120 —0~ Control 4d
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Abstract neural representations

1) Frames of reference for spatial representation

2)  Place cells & boundary vector cells

3) Neural level model of Spatial Memory and Imagery

4)  Grid cells and place cells

5)  Grid cells as dynamic imagery, a general model for planning?

A.  Hippocampus & striatum: Model-based versus model-free RL?

B. Dual representations theory, PTSD and intrusive imagery

A dual representation account of intrusive memories

Negative experiences affect distinct representations
in different ways:

4 Strengthens sensory/affective representations
through amygdala up-regulation

V¥ Weakens associative/contextual representations
through down-regulation of the hippocampus

cf Unitary model: intrusive traumatic memories are just (

very strong autobiographical memories (e.g. Rubin)

Negative
Event

Amygdala
sensory ctx
L. >

.

Hippocampus

7

Y

Y

' ™\ '
Enhanced Reduced
item memory associations
\ o L

Imbalance at encoding => Intrusive thoughts
Therapy strengthens association between
negative content and appropriate context

-
L

" Brewin, Gregory, Lipton, Burgess 2010
following Jacobs & Nadel (1998)
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Two options for reducing intrusive thoughts following a traumatic event?

[ ] P<oDI

PO M1

Disrupting consolidation of sensory
representations can reduce intrusive
thoughts after watching a traumatic
video (e.g. by playing Tetris)

Holmes et al., 2004; Holmes et al., 2010

Number of Flashbacks

Tetris No-task Pub Quiz
Brief wakeful rest can facilitate —i— Wakeful Resting
consolidation of neutral episodic 18 4 ~®- Spot he Difference

memories e.g. Dewar et al., 2012

=
L
o

Story Units Recalled
~
-
- -|/

Will wakeful rest enhance consolidation
of hippocampal representationsand so
reduce intrusive thoughts?

Immediate 15-30 Min 7 Days
Time of Recall

Brief wakeful rest and memory intrusions

Day 1 Day 1-7 Day 8
r 1 r 1 T 1
Encoding Intervention Intrusion Diary Memory Test
ProvocationTask

OLD or NEW?

\

20 clips 10mins ) o )
Experiment 2 (within-design)

p<0.05 p<0.05

10 3 - 5 20
8 " =
2] g [+ 1.5 L
c c
S g G* ’ 4 a8 g
g < “E" X g-m
= ‘—'1
k= £ ! WM ga.s
=
. . Rest WM
Rest WM Rest WM Diary  Provocation es

Brief wakeful rest reduced intrusions but not deliberate memory,
supporting a dual representation account of intrusive thoughts. Horlyck, Bisby, Burgess, in prep
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Conclusions

* Considerable progress has been madein understandinghow
environmental and self-motion information combine in neural
representations of location and orientation in rodents.

* We can use this to create a neural-level understanding of spatial
memory, learningand imaginationin humans, and begin to applyit to
conceptual knowledge? y
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